____ **C.U.SHAH UNIVERSITY Summer Examination-2019**

Subject Name : Particle and Nuclear Physics

Subject Code :4SC06PNP1		Branch: B.Sc. (Physics)	
Semester :6	Date: 30/04/2019	Time: 10:30 To 01:30	Marks : 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

0-1	Attempt the following questions:	(14)
a)	State the Gellmann-Nishijima Scheme.	01
b)	Which particles are said to be strange?	01
c)	State the CPT theorem.	01
d)	Define the range of Alpha particles.	01
e)	Write the Geiger-Nuttall law.	01
f)	Which particle was found to carry away part of the energy in a Beta decay process?	01
g)	Differentiate:Nuclear fusion versus Nuclear fission.	01
h)	Define the process of Pair Production.	01
i)	Which detector is used to detect light radiations?	01
j	What is the Dead time of a detector/ counter?	01
k)	Give the principle on which Linear accelerators work.	01
Ď	Define Parity.	01
m)	Why is it necessary to connect the pn junction in reverse bias while using it as a semiconductor detector?	01
n)	Name any two quarks.	01

Attempt any four questions from Q-2 to Q-8

Q-2		Attempt all questions	(14)
-	(A)	Check whether the given nuclear reaction is possible or not based on the	08
		conservation of Charge, Lepton number, Baryon number, Isospin, I_3 ,	
		Hypercharge and Strangeness. [The strangeness of Λ^0 is -1 and that of K^0 is 1.]	
		$p + p \rightarrow \Lambda^0 + K^0 + p + \pi^+$	
	(B)	Find the Charge, Baryon number, Isospin, I_{3} , Strangeness and Hypercharge of Σ^+ having quark content uss.	06

Q-3 Attempt all questions (14) Explain briefly the \propto -spectrum. **(A)** 05 Which properties of the nucleus was revealed in the \propto -decay spectrum?

	(B)	Derive the expression for Q value of an \propto -decay process.	04
	(C)	Explain briefly the Gamow's theory of \propto -decay.	05
Q-4		Attempt all questions	(14)
	(A)	Enumerate the problems encountered in a β -decay process. How was it	
		overcome?	07
	(B)	Explain briefly γ -decay and internal conversion process.	05
	(C)	What values does Lepton and Baryon number have?	02
Q-5		Attempt all questions	(14)
-	(A)	Briefly explain Direct reactions along with its two types.	03
	(B)	Explain in detail the Photoelectric effect.	07
	(C)	Determine the Charge, Baryon number, I_3 and Strangeness of proton (uud).	04
Q-6		Attempt all questions	(14)
	(A)	Explaining the kinematics, derive the expression for Q value of nuclear reactions.	07
	(B)	Explain in detail Van De Graaff Accelerator	07
Q-7		Attempt all questions	(14)
	(A)	Explain in detail the principle, construction and working of a GM Counter.	09
	(B)	Derive the expression for Q value of β^2 decay.	05
Q-8		Attempt all questions	(14)
	(A)	Write a note on Scintillation detectors.	07
	(B)	Explain the principle, construction and working of a Cyclotron.	07

